

ANNUAL DRINKING WATER QUALITY REPORT FOR 2024

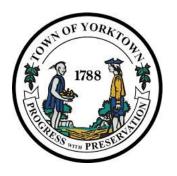
YORKTOWN CONSOLIDATED WATER DISTRICT

1080 Spillway Road Shrub Oak NY 10588

Public Water Supply # NY5903469

Edward Lachterman

Town Supervisor


Paul Vasillo

Distribution Superintendent

Jeffrey Dahlke

Asst. Distribution Superintendent

Call (914) 245-6111 with questions concerning your drinking water

INTRODUCTION

To comply with State regulations, the Yorktown Consolidated Water District (YCWD) will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Last year, your tap water met all State drinking water health standards. We are proud to report that our system did not violate a maximum contaminant level or any other water quality standard. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

If you have any questions about this report or concerning your drinking water, please contact Jeffrey Dahlke, Asst. Distribution Superintendent in our Water Quality Lab at 914-245-6111 ext. 631. We want you to be informed about your drinking water. If you want to learn more, please attend any of our regularly scheduled town board meetings. The Yorktown Town Board discusses water-related issues on an as-needed basis. For more information please visit the Town's website at www.yorktownny.gov Additionally, Board of Directors meetings, which consist of Town Supervisors from Yorktown, Montrose, Somers and Cortlandt, are held monthly. For more information regarding the Board of Director's meetings please contact Northern Westchester Joint Waterworks (N.W.J.W.W.) at 914-788-3400.

WHERE DOES OUR WATER COME FROM?

In general, the sources of drinking water (both tap and bottled) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include microbial, inorganic, organic chemical, and radioactive contaminants, and pesticides and herbicides. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

During 2024, our major water sources were the Amawalk Reservoir, located in the Town of Somers, and the Catskill Aqueduct in the Town of Cortlandt. Prior to distribution, water at the Catskill and Amawalk Water Treatment Plants is treated with pH adjustment, coagulation, filtration, chlorine disinfection (see INFORMATION ON FLUORIDE ADDITION section of this report), and corrosion control.

The NYS Department of Health (DOH) has evaluated the susceptibility of water supplies statewide to potential contamination under the Source Water Assessment Program (SWAP), and their findings are summarized in the paragraphs below. It is important to stress that these assessments were created using available information and only estimate the potential for source water contamination. Elevated susceptibility ratings do not mean that source water contamination has or will occur for this potable water supply (PWS). Our water system provides treatment and regular monitoring to ensure the water delivered to consumers meets all applicable standards.

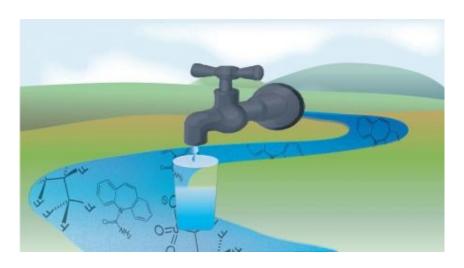
We obtain water from the New York City water supply system. Water either comes from the Catskill watersheds west of the Hudson River and/or from the Amawalk watershed in Putnam and Westchester counties. The New York City Department of Environmental Protection (DEP) implements a series of programs to evaluate and protect source water quality within these watersheds. Their efforts focus on three important program areas: the enforcement of strengthened Watershed Rules and Regulations; the acquisition and protection of watershed lands; and implementation of partnership programs that target specific sources of pollution in the watersheds. Due to these intensive efforts, the SWAP methodologies applied to the rest of the state were not applied for this PWS. Additional information on the water quality and protection efforts in these New York City watersheds can be found at DEP's website: www.nyc.gov/dep/watershed.

The main water quality concerns associated with land cover in these watersheds are agriculture and residential land uses which can contribute microbial contaminants, pesticides, and algae producing nutrients. There are also some concerns associated with wastewater, but advanced treatments which reduce contaminants are in place for most of these discharges. Additionally, the presence of other discrete facilities, such as landfills, chemical bulk storages, etc. could lead to some local impacts on water quality, but significant problems associated with these facilities are unlikely due to the size of the watershed and surveillance and management practices.

FACTS AND FIGURES

Our water system serves approximately 36,000 people through approximately 10,000 service connections. The total water produced in 2024 was 943 million gallons. The daily average amount of water treated and pumped into the distribution system was approximately 2.6 million gallons per day (our highest single day was 3.3 million gallons per day). The amount of water delivered to metered customers in Yorktown, Cortlandt, Somers, Putnam Valley and Mill Pond Water Districts was 794 million gallons. The distribution system contains approximately 12 MG of water in storage. This leaves an unaccounted for total of 131 million gallons (13.9% of the total amount produced). This water was used for water main cement relining, hydrant flushing, water main breaks, fire flow tests, fighting fires and leakage.

In 2024, water customers were charged a base water rate of \$64.35 for the first 9,000 gallons of water and \$7.15 per 1,000 gallons thereafter (out of district customers paid double this amount, respectively). The average bulk rate paid by Putnam Valley was \$17.19 and Mill Pond was \$19.27. The rate of penalty charge for late payment of water charges was 10% per a four month billing period. The average annual water charge was \$711 per household.


ARE THERE CONTAMINANTS IN OUR DRINKING WATER?

As the State regulation require, we routinely test your drinking water for numerous contaminants. These contaminants include total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, haloacetic acids, radiological and synthetic organic compounds.

According to State regulations, the following lists of substances (along with test frequencies) were tested for in your drinking water and **not detected.** Bromoacetic acid and bromoform were tested quarterly from four sites. Arsenic, beryllium, cadmium, cyanide, mercury, nickel nitrite, selenium, silver, thallium and zinc were tested for annually. Bromochloromethane, bromomethane, carbon tetrachloride, chloroethane, chloromethane, dichlorodifluoromethane, 1,1-dichlorrethane, 1,2-dichloroethane, 1,1dichloroethene, cis-1, 2-dichloroethene, trans-1, 2-dichloroethene, 1,2-dichloropropane, 1,3-dichloropropane, 2,2-dichloropropane, 1,1dichloropropene, cis-1, 3-dichloropropene, trans-1, 3-dichloropropene, methylene chloride, 1,1,1,2-tetrachlorosthane, 1,1,2,2tetrachlroethane, tetrachloroethene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethene, trichlorofluoromethane, 1,2,3trichloropropane, vinyl chloride, benzene, bromobenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, chlorobenzene, 2chlorotoluene, 4-chlorotoluene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, ethyl benzene, hexachlorobutadiene, isopropylbenzene, p-isopropyltoluene, n-propylbenzene, styrene, toluene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4trimethylbenzene, 1,3,5-trichloromethylbenzen, p&m-xylene, o-xylene, methyl t-butyl ether, 1,2-dibromoethane, 1,2-dibromo-3chloropropane, aldrin, dieldrin, chlordane, endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, toxaphene, propachlor, PCB's, 2,4-D, 2,4,5-T, silvex, dalapon, dicamba, dinoseb, pentachlorophenol, pichloram, alachlor, atrazine, simazine, hexachlorobenzene, hexachlorocyclopentadiene, benzo(a)pyrene, di (2-ethylexyl) adipate, aldicarb sulfoxide, aldicarb sulfone, oxamyl, methomyl, 3-hydroxycarbofuran, aldicarb, carbofuran, carbaryl, glyphosate, chloroform, dibromochloromethane, 1,2-dichloroethene, 1,2 dichloroethene, 1,2 dic robenzene-d4, 4-bromofluorobenzene, endothall, diquat, butachlor, bis(2-ethylhexyl) phthalate, metochlor and metribuzin were tested annually.

The table presented on the following pages depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline at (800-426-4791) and https://www.epa.gov/sdwa or the Westchester County DOH at (914) 813-5000 and https://health.westchestergov.com

DETECTED SUBSTANCES

Contaminant Violation Yes/No			Samp (Amaw	ate of Average Level Detected hawalk/ Amawalk & Cats-atskill)					Unit Measurement			МС	CLG	Regulatory Limit (MCL, TT, or AL)		Lil	Likely Source of Contamination			
Inorganic	·		ı.		Į.												l			
Alkalinity		No)	Daily		47.44 (12.10 -93.60)				mg/L as CaCO3			N	/A	N/A			Naturally occurring		
Hardness		No		Daily		45.423 (11.80 -106.00)				mg/L as CaCO3			N	/A	N/A			Naturally occurring		
Aluminum		No)	5/31/	24		ND				mg/L	-	N	/A	N/A	Ą	In cor	Naturally of Naturally of Naturally of Naturally of Naturally of Salt Container additive to of Natural deponders strong tee & aluminum faction of natural of runo Naturally of Naturally of Parage of Results above AL Collection of Naturally of Natural of Naturally of Natural o		eatment chemical
Barium		No)	5/31/	24	0.016	645 (0. 0.27)	.0059 -			mg/L	-	:	2	MCL	2	E	Frosion of r	natu	ıral deposits.
Chloride		No)	5/31/	/24	50.9	(9.9 -	91.9)		mg/L			N	/A	MCL 250		Natura	Naturally occurring or indicative of road salt contamination.		
Chlorine, Fre	e	No		Dail	у	(1	1.54 .18-2.			mg/L		-	N	/A	MRDL 4		Wat	Water additive to control microbes		
Fluoride *		No	No		5/31/24		<0.10			mg/L			Ζ	/A	MCL 2.2		that pror	Frosion of natural deposits; Water additive hat promotes strong teeth; Discharge from ertilizer & aluminum factories.		
Nitrate as N		No		5/31/	5/31/24		0.212 (0.095 - 0.33)				mg/L			0	MCL 10		Erosi	Erosion of natural deposits, fertilizer runoff.		
рН		No)	Dail	y	7.65 (7.27-8.04)					N/A		N	/A	N/A			N/A		
Phosphorus Ortho	,	No		Dail	у	(0	0.79 (0.24-1.34)				mg/L		N	/A	N/A		А	Additive to prevent corrosion		
Sodium		No)	5/31/	5/31/24 2		29.02 (7.34 - 50.7)				mg/L		N	/A	(20) ¹		Naturall	Naturally occurring; Road salt; Water softeners; Animal waste		
Sulfate		No	,	5/31/	24	7.05 (<5.0 - 9.1)				mg/L		-	Ν	/A	MCL 250			Naturally occurring		
Contaminant				ate of	LINGTOCTO		ed Measu		re	- М	MCLG (N		ulato imit L, 1 AL)	п	Samples		# amples oove AL	results above	Lil	kely Source of Con- tamination
Inorganic																		l		
Copper		ואות ו		11/23- 13/23	0.123 (0.002-0.						1.3	3 AL		3	30		0	0	plu sio lea	rrosion of household mbing systems; ero- n of natural deposits; ching from wood pre- vatives
Lead ⁸		No		11/23- 13/23	(<	1.2 ³ 1.0-1		ug/L	-		0	Al	_ 15	5	30		0	0	р	Corrosion of household lumbing systems; ero- ion of natural deposits
Contaminants	Contaminants Violati Yes or			s	Date of Sampl		Level Detect			ed MCLG				Re	degulatory Limi		t I	Likely Source of Contaminants		
Total Coliform Bacteria		N	o	05/24/24, 06/30// 07/18/24 09/19/2 11/22/24 12/01/2		19/24	6 positive samp			oles	les n/a				ore than 5% of e samples are positive			Naturally present in environment		nt in environment
Contamin	Contaminant		Violation San Yes/No (Ama		Date Sam Amav Cats	ple Level Detec				ed Amawalk & erage (Range)			Me	Unit Measurement		MCL		Regulatory Limit (MCL, TT or AL)		Likely Source of Contamination
Filtration Turl	Filtration Turbidity		4 no		02/26/24, 04/3/24 & 05/15/24					(0.01 - 0.25)			NTU		U	U N/A		TT=95.00% of samples<0.3 NTU		Soil runoff.
Distribution Tu	Distribution Turbidity ⁴				days wee	ys per 0. eek (0.05				9 - 0.63)			NTU		N/A	MC	MCL 5.0 NTU Soil rur		Soil runoff.	

Contaminant		Viola Yes		(Ama	Sample (Amawalk/ Catkill) ed Am Aver		ge Average			Measurement		MCLG	Regulatory Lim (MCL, TT or Al	it Likely Source of Contamination
Synthetic Orga	nic			•		•		•					•	
Perfluorooctanoic Acid (PFOA)		n	no Ai		3/24 valk & skill	4.6		ND			ng/l	N/A	MCL = 10	Released into the envi- ronment from widespread use in commercial and industrial applications,
Perfluorooctane sul- fonic Acid (PFOS)		n	no 12/2: Amaw Cats			& 2.9		ND			ng/l	N/A	MCL = 10	Released into the envi- ronment from widespread use in commercial and industrial applications,
1,4-Dioxane		n	no 02/23/24 Amawalk Catskill		valk &	ND		ND		ng/l		N/A	MCL = 1000	Released into the environment from commercial and industrial sources & is associated with inactive & hazardous waste sites.
Contaminant	ation s/No	tion Date of /		(Max	I Detected ximum & Mea		Unit asurement			Regulatory Limit (MCL, TT or AL)		Likely Source of Contamination		
Organic ⁵				J.									•	
Haloacetic Acids n		10	2/07/24- 11/07/24		26.80 (10.0 - 28.3)			ug/L		/A	MCL (Annual A		By-product of drinking water disinfection needed to kill harmful organisms.	
Total Trihalome- n thanes		10	2/07/24- 11/07/24 (13			47.23 3 - 60.0)		ug/L	N	/A	MCL 80 (Annual Average)		needed to kill hat formed when	drinking water disinfection frmful organisms. TTHMs are source water contains large ts of organic matter.
Contaminant		Violation S Yes/No (A		Date Sam (Amay Cats	ple Detected /alk/ Amawalk		κ	Level Detected Catskill (Average Range		Mea	Unit asurement	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination
Radioactive ⁶														
Combined Radium 226 & Radium 228				8/12/2021 / 8/13/2021		0.559		0.1961		pCi/L		0	MCL 5 pCi/L	Erosion of natural depos- its
Gross Alpha Activity		no	no 8/12/202 8/13/20			-1.27		-0.322			pCi/L	0	MCL 15	Erosion of natural deposits.
Gross Beta Activity ⁷				8/12/20 8/13/2		1.01		1.35			pCi/L	0	MCL 50 pCi/L	Decay of natural deposits and human-made emissions.
-						-								

Level Detect- Level Detected

0.035

1 People on severely restricted sodium diets should not consume water containing more than 20 mg/L of sodium. Water containing more than 270 mg/L of sodium should

0.016

ug/L

not be used by people on moderately restrictive sodium diets.

no

OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS? section regarding violation.

Erosion of natural

deposits.

30 ug/L

⁵ This level represents the highest locational running annual average calculated from data collected.

8/12/2021 /

8/13/2021

Date of

⁶ Sample frequency every 9 years.

Total Uranium

^{*} NWJWW did not introduce fluoride into YCWD's potable water. Contact Jeffrey Dahlke at 914-245-6111 ext. 631 should you have any questions.

² This level presented represents the 90th percentile of the 30 sites tested for copper in 2023. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the copper values detected at your water system. In this case, 30 samples collected at your water system and the 90th percentile value was 0.123 mg/l. The action level for copper was not exceeded at any of the sites tested. See IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS? section regarding violation.

3 The level presented represents the 90th percentile of the 30 samples collected. The action level for lead was not exceeded at any of the sites tested. See IS

⁴Turbidity is a measure of the cloudiness of the water. We test it because it is a good indicator of the effectiveness of our filtration system. Our highest single turbidity measurement (0.63 NTU) for the year occurred on 04/29/24. State regulations require that turbidity must always be below 1 NTU. The regulations require that 95% of the turbidity samples collected have measurements below 0.3 NTU. All measurements met the treatment technique for turbidity, the levels recorded were within the acceptable range allowed and did not constitute a treatment technique violation.

⁷ The State considers 50 pCi/L to be a level of concern for Beta particles.

⁸ Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. The Yorktown Consolidated Water District is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact The Yorktown Consolidated Water District, Jeffrey Dahlke @ 914-245-6111 Ext. 631. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/safewater/lead

Definitions:

N/A: Not Applicable.

Picocuries per liter (pCi/L): A measure of the radioactivity in water.

<u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

<u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level (AL): The concentration of a contaminant, if exceeded, triggers treatment or other requirements that a water system must follow.

<u>Treatment Technique (TT)</u>: A required process intended to reduce the level of a contaminant in drinking water.

Nephelometric Turbidity Unit (NTU): A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million – ppm).

Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion – ppb).

<u>Maximum Residual Disinfectant Level</u> (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbiological contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbiological contamination.

Nanograms per liter (ng/l): Corresponds to one part of liquid in one trillion parts of liquid (parts per trillion - ppt).

WHAT DOES THIS INFORMATION MEAN?

As you can see by the table, our system had no violations. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below New York State requirements. We are required to present the following information on lead in drinking water:

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. The Yorktown Consolidated Water District is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact Yorktown Consolidated Water District, Jeffrey Dahlke @ 914-245-6111, Ext. 631. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/safewater/lead

IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS?

We constantly test for various contaminants in the water supply to comply with regulatory requirements. Although a few contaminants were detected by our testing, their concentrations were below the levels determined by the State and the EPA to cause health concerns.

DO I NEED TO TAKE SPECIAL PRECAUTIONS?

Some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risks of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (1-800-426-4791).

INFORMATION ON FLUORIDE ADDITION

Since October 3, 2017, supplemental fluoride has not been added to your drinking water and the YWD expected fluoride addition to be restored in 2024. You may want to discuss this with your family dentist to see if some other form of fluoride supplement should be considered for your dental protection.

On October 3, 2017 N.W.J.W.W.'s Amawalk Water Treatment Facility stopped adding fluoride to its treated water. The fluoride feed system to the Catskill facility has been offline since January 2013. Due to hydraulics associated with Yorktown's distribution system, N.W.J.W.W. cannot provide an optimal level of fluoride to all residents unless fluoride is added at both facilities. Therefore, in consultation with Westchester and NYS Health Departments, as well as Yorktown and Somers officials, the decision was made to temporarily discontinue fluoridation at the Amawalk facility. A new treatment facility has been constructed to replace the Catskill Treatment Plant's fluoridation process. Final approval was obtained from the Westchester County Department of Health, the fluoride facility was ready to be brought online and fluoride was to be added to the water treatment process.

However on September 26, 2024, based on a Federal Court Order, the Town of Yorktown made an emergency determination to suspend the planned fluoridation of the Town's public water supply ("Emergency Suspension"). The Town provided public notice and notice to the N.Y.S. Department of Health of the Emergency Suspension. If you have any questions, please contact the Yorktown Consolidated Water District's Water Quality Lab, Jeffrey Dahlke, at 914-245-6111 ext. 631.

INFORMATION ON LEAD SERVICE LINE INVENTORY

A LEAD SERVICE LINE (LSL) IS DEFINED AS ANY PORTION OF PIPE THAT IS MADE OF LEAD WHICH CONNECTS THE WATER MAIN TO THE BUILDING INLET. AN LSL MAY BE OWNED BY THE WATER SYSTEM, OWNED BY THE PROPERTY OWNER, OR BOTH. THE INVENTORY INCLUDES BOTH POTABLE AND NON-POTABLE SLS WITHIN A SYSTEM.

By October 16, 2024, every water system, with no exception, must develop an initial service line material inventory that includes all SLs regardless of ownership and submit the inventory to its local health department (LHD). The Yorktown Consolidated Water District is in violation of federal Lead and Copper Rule Revisions (LCRR) requirements for failing to provide a publicly accessible lead service line inventory. The Yorktown Water District is continuing it's collection of required data on over 10,000 service lines. The Lead Service Line Inventory is expected to be completed & submitted in 2025. Once approved, the LSL Inventory will be available online at https://www.yorktownny.gov/water/lead-service-line-inventories

WHY SAVE WATER AND HOW TO AVOID WASTING IT?

Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water:

- *Saving water saves energy needed to treat and deliver the water;
- *Saving water reduces the need to construct costly new sources, pumping systems and water storage reservoirs; and,
- *Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential fire fighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:

- *Automatic dishwashers use about 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity
- *Turn off the tap when brushing your teeth.
- *Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- *Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and save more than 30,000 gallons a year.
- *Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances, and then check the meter after 15 minutes. If it moved, you have a leak.

INVENTORY:

YCWD system is currently comprised of approximately 1,700 hydrants; 1,700 hydrant valves; 1,900 street valves; 9,300 curb boxes and 180 miles of water main.

SYSTEM IMPROVEMENTS/ON-GOING SYSTEM MAINTENANCE

In 2024, the following distribution projects were started or completed:

- A total of 43 water main breaks occurred during the year;
- Over 200 fire hydrants were checked for operation and/or flushed;
- 13 hydrants were repaired/replaced;
- The Croton Heights Rd. Water Main Extension Project was started:
- 25 system valves were either installed or replaced as part of our valve replacement program/relining program;
- 35 curb boxes were repaired or replaced;
- 701 new water meters were installed and connected to the antennae based (automatic meter reading) system;
- 4 valve boxes were repaired;
- 2 meter pit was repaired or replaced;
- 1,261 water line "mark outs" were performed for compliance with NYS Dig Safe code regulations;
- 21 responses to "possible main break" calls (checked for leaks);
- 16 service lines were repaired;
- 121 water shut-off requests were addressed;
- 680 Microbiological Monitoring Samples were collected & analyzed.
- 48 Disinfection By Products Monitoring Samples were collected & analyzed.
- Unregulated Contaminant Monitoring Rule 5: Samples were collected & analyzed.

SYSTEM IMPROVEMETS EXPECTED FOR 2025

In order to ensure that our residents receive the highest quality water, the YCWD will continue it's ongoing water infrastructure maintenance and improvements during 2025. To this end:

- The French Hill Water Storage Tank will be painted;
- The Croton Heights Rd. Water Main Extension Project will continue:
- With final approval from W.C.D.O.H. the Brook Lane, Deerhaunt St. & Cecile Drive Water Main Extensions will begin;
- Commercial Water Meter Testing program will continue;
- Our isolation valve replacement program will continue;
- Our fire hydrant replacement program will be ongoing;
- Continuation of our Smart Water Meter Replacement Program for better usage accounting;
- Rehabilitation of Quinlan Tanks #1 & #2 Valve Pits:
- Structural Liner Installation in Rt. 35 & Greenwood St. 12" Transmission Mains;
- Structural Liner Installation in Mill St. water main (repair).

This is just a snapshot of what we anticipate for the 2025.

CLOSING STATEMENT

It is the YCWD's mission to provide the highest quality of drinking water to all our customers. We ask everyone to help us protect our water sources, which are the heart of our community and our way of life. Paper copies of this report are available at the Yorktown Water District Office, the Yorktown Town Hall, the Albert A. Capellini Community and Cultural Center and the John C. Hart Library.

If you have questions concerning your drinking water or would like to have a paper copy of the Annual Water Quality Report mailed to you, please don't hesitate to call us at (914) 245-6111 Ext. 631